domingo, 23 de noviembre de 2014

Alcanos, Alquenos y Alquinos

ALCANOS:
El primer miembro de la familia de los alcanos es el metano. Está formado por un átomo de carbono, rodeados de 4 átomos de hidrógeno.
Fórmula desarrollada:
Fórmula molecular: CH4
Los demás miembros se diferencian en el agregado de un átomo de carbono. Los nombres de los más conocidos son:
Etano: dos átomos de C.
Propano: Tres átomos de C.
Butano: Cuatro átomos de C.
Pentano: Cinco átomos de C.
Hexano: Seis átomos de C.
Heptano: Siete átomos de C.
Octano: Ocho átomos de C.
Nonano: Nueve átomos de C.
Decano: Diez átomos de C.
Algunas fórmulas:
Etano:
H3C  —- CH3
Propano:
H3C  —- CH2 —- CH3
Pentano:
H3C  —- CH2 —– CH2 —– CH2 —– CH3
Para concluir decimos que los alcanos presentan la siguiente fórmula molecular (CnH2n+2). Donde n es la cantidad de átomos de Carbono y (2n+2) nos da la cantidad de átomos de hidrógeno.
Propiedades físicas:
Los alcanos son parte de una serie llamada homóloga. Ya que cada término se diferencia del que le continúa en un CH2. Esto nos ayuda a entender sus propiedades físicas ya que sabiendo la de algunas podemos extrapolar los resultados a las demás. Las principales características físicas son:
Los cuatro primeros miembros bajo condiciones normales o en su estado natural son gaseosos.
Entre el de 5 carbonos y el de 15 tenemos líquidos y los restantes sólidos.
El punto de ebullición asciende a medida que crece el número de carbonos.
Todos son de menor densidad que el agua.
Son insolubles en el agua pero solubles en solventes orgánicos.
Propiedades Químicas:
Presentan muy poca reactividad con la mayoría de los reactivos químicos. Por este motivo se los llama también parafinas.
El ácido sulfúrico, hidróxido de sodio, ácido nítrico y ciertos oxidantes los atacan solo a elevada temperatura.
CH3 — CH3   —————-> CH3 — CH2  NO2   +   H2O   (a 430°C y en presencia de HNO3)
Combustión:
CH3 — CH3    +    7/2 O2  ——>   2 CO2   +    3 H2O   +   372,8 Kcal
Compuestos de Sustitución:
Las reacciones de sustitución son aquellas en las que en un compuesto son reemplazados uno o más átomos por otros de otro reactivo determinado.
Loa alcanos con los halógenos reaccionan lentamente en la oscuridad, pero más velozmente con la luz.
CH4        +        Cl2       —–>         CH3Cl          +          HCl
metano                          (luz)          cloruro de metilo
ALQUENOS:
Los alquenos se diferencian con los alcanos en que presentan una doble ligadura a lo largo de la molécula. Esta condición los coloca dentro de los llamados hidrocarburos insaturados junto con los alquinos. Con respecto a su nomenclatura es como la de los alcanos salvo la terminación. En lugar de ano como los alcanos es eno. Al tener una doble ligadura hay dos átomos menos de hidrógeno como veremos en las siguientes estructuras. Por lo tanto, la fórmula general es CnH2n.
Explicaremos a continuación como se forma la doble ligadura entre carbonos.
Anteriormente explicamos la hibridación SP3. Esta vez se produce la hibridación Sp2. El orbital 2s se combina con 2 orbitales p, formando en total 3 orbitales híbridos llamados Sp2. El restante orbital p queda sin combinar. Los 3 orbitales Sp2 se ubican en el mismo plano con un ángulo de 120° de distancia entre ellos.
El orbital p que no participo en la hibridación ocupa un lugar perpendicular al plano que sostiene a los tres orbitales Sp2.
El enlace doble se forma de la siguiente manera:
Uno de los orbitales sp2 de un C se enlaza con otro orbital sp2 del otro C formando un enlace llamado sigma. El otro enlace está constituido por la superposición de los enlaces p que no participaron en la hibridación. Esta unión se denomina Pi (∏).
Así tenemos por ejemplo Eteno, Propeno, Buteno, etc.
Al nombrar Alquenos y Alquinos a la doble o triple ligadura se le adjudica un número que corresponde a la ubicación de dicha ligadura.
Eteno:
CH2  =  CH2
Propeno:
CH2  =  CH2 –CH3
Buteno – 1
CH2  =  CH — CH2 — CH3
Buteno – 2
CH3  –  CH = CH — CH3
Pentino – 2
CH3 — C  ≡  C — CH2 —-CH3
Propiedades Físicas:
Son similares a los alcanos. Los tres primeros miembros son gases, del carbono 4 al carbono 18 líquidos y los demás son sólidos.
Son solubles en solventes orgánicos como el alcohol y el éter. Son levemente más densos que los alcanos correspondientes de igual número de carbonos. Los puntos de fusión y ebullición son más bajos que los alcanos correspondientes. Es interesante mencionar que la distancia entre los átomos de carbonos vecinos en la doble ligadura es más pequeña que entre carbonos vecinos en alcanos. Aquí es de unos 1.34 amstrong y en los alcanos es de 1.50 amstrong.
Propiedades Químicas:
Los alquenos son mucho más reactivos que los Alcanos. Esto se debe a la presencia de la doble ligadura que permite las reacciones de adición. Las reacciones de adición son las que se presentan cuando se rompe la doble ligadura, este evento permite que se adicionen átomos de otras sustancias.
Adición de Hidrógeno:→
En presencia de catalizadores metálicos como níquel, los alquenos reaccionan con el hidrógeno, y originan alcanos.
CH2  =  CH2      +      H2    ——>   CH3  –  CH3     +    31,6 Kcal
Adición de Halógenos
CH2  =  CH2      +      Br2  ——->  CH2Br  –  CH2Br
Dibromo 1-2 Etano
Adición de Hidrácidos:
CH2  =  CH2      +     HBr   ——->    CH3  —   CH2 Br
Monobromo Etano
Cuando estamos en presencia de un alqueno de más de 3 átomos de carbono se aplica la regla de Markownicov para predecir cuál de los dos isómeros tendrá presencia mayoritaria.
H2C = CH — CH3  +  H Cl  →  H3C — CHBr — CH3    monobromo 2 – propano
→  H3C — CH2 — CH2Br  monobromo 1 – propano
Al adicionarse el hidrácido sobre el alqueno, se formara casi totalmente el isómero que resulta de unirse el halógeno al carbono más deficiente en hidrógeno. En este caso se formara más cantidad de monobromo 2 – propano.
Combustión:
Los alquenos también presentan la reacción de combustión, oxidándose con suficiente oxigeno.
C2H4   +   3 O2   —->    2 CO2   +   2 H2O
Etano
Diolefinas:
Algunos Alquenos poseen en su estructura dos enlaces dobles en lugar de uno. Estos compuestos reciben el nombre de Diolefinas o Dienos. Se nombran como los Alcanos, pero cambiando le terminación ano por dieno.
H2C  =  C  =  CH2
Propadieno  – 1,3
H2C  =  CH — CH = CH2
Butdieno – 1,3
ALQUINOS:
Estos presentan una triple ligadura entre dos carbonos vecinos. Con respecto a la nomenclatura la terminación ano o eno se cambia por ino. Aquí hay dos hidrógenos menos que en los alquenos. Su fórmula general es CnH2n-2. La distancia entre carbonos vecinos con triple ligadura es de unos 1.20 amstrong.
Para la formación de un enlace triple, debemos considerar el otro tipo de hibridación que sufre elátomo de C. La hibridación “sp”.
En esta hibridación, el orbital 2s se hibridiza con un orbital p para formar dos nuevos orbitales híbridos llamados “sp”. Por otra parte quedaran 2 orbitales p sin cambios por cada átomo de C.
El triple enlace que se genera en los alquinos está conformado por dos tipos de uniones. Por un lado dos orbitales sp solapados constituyendo una unión sigma. Y las otras dos se forman por la superposición de los dos orbitales p de cada C. (Dos uniones ∏).
Ejemplos:
Propino
CH  ≡  C — CH3
Propiedades físicas:
Los dos primeros son gaseosos, del tercero al decimocuarto son líquidos y son sólidos desde el 15 en adelante.
Su punto de ebullición también aumenta con la cantidad de carbonos.
Los alquinos son solubles en solventes orgánicos como el éter y alcohol. Son insolubles en agua, salvo el etino que presenta un poco de solubilidad.
Propiedades Químicas:
Combustión:
2 HC ≡ CH  +  5 O2 ——>   4 CO2  +  2 H2O  +  332,9 Kcal
Adición de Halógenos:
HC ≡ CH —- CH3    +    CL2  —>  HCCl  =  CCl — CH3
Propino                                     ,2 – dicloro propeno
Adición de Hidrógeno: Se usan catalizadores metálicos como el Platino para favorecer la reacción.
HC ≡ C —- CH3    +   H2   ——>  H2C = CH — CH3
Propino                                              Propeno
Se puede continuar con la hidrogenación hasta convertirlo en alcano si se lo desea.
Adición de Hidrácidos:
HC ≡ CH —- CH3    +   HBr  —->   H2C = C Br —- CH3
Propino – 1                                          Bromo – 2 – Propeno
Como se observa se sigue la regla de Markownicov. Ya que el halógeno se une al carbono con menos hidrógenos. En este caso al del medio que no tiene ninguno.
Ahora vamos a explicar como se denominan a los hidrocarburos con ramificaciones.
Aquí podemos ver que tenemos dos ramificaciones. Los grupos que forman esa ramificación son considerados radicales. Radical en química es un átomo o grupo de átomos que posee una valencia libre. Esta condición los hace susceptibles a unirse a cadenas carbonadas en este caso.
Obtenemos un radical cuando al metano (CH4) le quitamos un átomo de hidrógeno en su molécula quedándole al carbono una valencia libre.
CH3
Este radical se llama metil o metilo. Su nombre deriva del metano. Se les agrega el sufijo il.
Si lo obtuviéramos a partir del Etano se llamaría etil y a partir del propano, propil y así sucesivamente.
Etil y Propil:
H3C — CH2 –
H3C — CH — CH2 –
A veces se presentan otros radicales cuando el hidrógeno faltante es de un carbono secundario, es decir, que está unido a otros dos carbonos. Si al propano le quitamos un H del C del medio tenemos al radical isopropil:
H3C — CH — CH3
Otros radicales que podemos citar son el isobutil y el ter-butil derivado del butano.
Isopropil e Isobutil
isopropil
Ter-butil
terbutil
Volviendo al primer ejemplo de hidrocarburo ramificado.
metilbutano
Vemos claramente una cadena horizontal integrada por 4 átomos de C, y un grupo metilo en la parte superior. Este metil es la ramificación. Se nombra primero a este metil con un número que indica la posición de este en la cadena más larga. El numero uno se le asigna al carbono que está más cerca de la ramificación. Luego nombramos a la cadena.
El nombre es 2 metil-Butano.
Otros ejemplos:
alcano ramifi
2,2,4-triimetil pentano (Los metilos están ubicados en los carbonos 2 y 4 respectivamente). Se toma como carbono 1 el primero que esta a la izquierda ya que más cerca de este extremo hay más metilos.
alcano ramificado
Isomería:
Los compuestos hidrocarbonados al tener fórmulas grandes presentan variación en su disposición atómica. Es decir, con la misma fórmula molecular pueden tener varias fórmulas desarrolladas. Esto es la isomería. Aunque tenemos que decir que hay varios tipos de isomería. Aquí explicaremos por ahora la isomería de cadena, o sea, las distintas formas que pueden tomar las cadenas carbonadas.
Por ejemplo, en el caso del Pentano (C5H12), a este lo podemos presentar como una cadena lineal o como cadenas ramificadas.
Pentano (lineal)
H3C — H2C —H2C — H2C — CH3
2-metil Butano (ramificado)
metilbutano
Para ser considerado una ramificación, el radical debe estar en un C que no sea del extremo, es decir, en un C secundario. Si hubiésemos puesto el metil en el otro C secundario, el nombre no hubiera variado ya que la numeración empezaría del otro extremo.
2,2 –dimetil Propano
dimetil
Los Alquenos y Alquinos también pueden presentar este tipo de isomería al cambiar la posición de sus grupos ramificados. Pero presentan aparte otro tipo de isomería llamada de posición.
En esta isomería lo que varia es la posición del doble o triple enlace. Por ejemplo:
Buteno-1
CH2 = CH — CH2 — CH3
Buteno-2
CH3 — CH = CH — CH3

Vídeo de los hidrocarburos


Hidrocarburos


Los hidrocarburos


La palabra hidrocarburos designa un grupo de compuestos orgánicos constituidos principalmente por átomos de carbono e hidrógeno. La conformación y estructura de sus moléculas abarca desde la más simple, el metano (CH4), hasta aquellas de elevada complejidad como las correspondientes a los hidrocarburos aromáticos policíclicos.
Dentro de ellos existen familias de compuestos agrupadas según su configuración (estructura molecular) y propiedades. Los átomos de carbono se unen entre si formando el esqueleto básico, pudiendo hacerlo en estructuras lineales simples y/o ramificadas o en estructuras cíclicas en forma de anillos.

Hibridación de orbitales


Hibridación sp

Se define como la combinación de un orbital S y un P, para formar 2 orbitales híbridos, con orientación lineal. Este es el tipo de enlace híbrido, con un ángulo de 180º y que se encuentra existente en compuestos con triples enlaces como los alquinos (por ejemplo el acetileno):

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp}\;
\frac{\uparrow\,}{sp}
\frac{\uparrow\,}{p}
\frac{\uparrow\,}{p}
se caracteriza por la presencia de 2 orbitales pi(π).

Hibridación sp2

Se define como la combinación de un orbital S y 2 P, para formar 3 orbitales híbridos, que se disponen en un plano formando ángulos de 120º.
Los átomos que forman hibridaciones sp2 pueden formar compuestos con enlaces dobles. Forman un ángulo de 120º y su molécula es de forma plana. A los enlaces simples se les conoce como enlaces sigma (σ) y los enlaces dobles están compuestos por un enlace sigma y un enlace pi (\pi). Las reglas de ubicación de los electrones en estos casos, como el alqueno etileno obligan a una hibridación distinta llamada sp2, en la cual un electrón del orbital 2s se mezcla sólo con dos de los orbitales 2p: surge a partir o al unirse el orbital s con dos orbitales p; por consiguiente, se producen tres nuevos orbitales sp2, cada orbital nuevo produce enlaces covalentes

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp^2}\;
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{sp^2}
\frac{\uparrow\,}{p}
Tridimensionalmente, la distancia entre un hidrógeno y otro en algún carbono del etileno son equivalentes e iguales a un 
ángulo de 120°.

Hibidacion sp3

El átomo de carbono tiene seis electrones: dos se ubican en el orbital 1s (1s²), dos en el 2s (2s²) y los restantes dos en el orbital 2p (2p²). Debido a su orientación en el plano tridimensional el subnivel 2p tiene capacidad para ubicar 6 electrones: 2 en el orbital Px, dos en el orbital Py y dos electrones en el orbital Pz. Los dos últimos electrones del carbono se ubicarían uno en el 2px, el otro en el 2py y el orbital 2pz permanece vacío (2px¹ 2py¹). El esquema de lo anterior es (cada flecha un electrón):
C\quad
  \frac{\uparrow\downarrow}{1s}\;
  \frac{\uparrow\downarrow}{2s}\;
  \frac{\uparrow\,}{2p_x}\;
  \frac{\uparrow\,}{2p_y}\;
  \frac{\,\,}{2p_z}
Para satisfacer su estado energético inestable, un átomo de valencia como el del carbono, con orbitales parcialmente llenos (2px y 2py necesitarían tener dos electrones) tiende a formar enlaces con otros átomos que tengan electrones disponibles. Para ello, no basta simplemente colocar un electrón en cada orbital necesitado. En la naturaleza, éste tipo de átomos redistribuyen sus electrones formando orbitales híbridos. En el caso del carbono, uno de los electrones del orbital 2s es extraído y se ubica en el orbital 2pz. Así, los cuatro últimos orbitales tienen un electrón cada uno:


C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{2s}\;
\frac{\uparrow\,}{2p_x}
\frac{\uparrow\,}{2p_y}
\frac{\uparrow\,}{2p_z}
El estímulo para excitar al electrón del 2s al 2pz es aportado por el primer electrón en formar enlace con un átomo con este tipo de valencia. Por ejemplo, el hidrógeno en el caso del metano. Esto a su vez incrementa la necesidad de llenado de los restantes orbitales. Estos nuevos orbitales híbridos dejan de ser llamados 2s y 2p y son ahora llamados sp3 (un poco de ambos orbitales):

C^{*}\quad
\frac{\uparrow\downarrow}{1s}\;
\frac{\uparrow\,}{sp^3}\;
\frac{\uparrow\,}{sp^3}
\frac{\uparrow\,}{sp^3}
\frac{\uparrow\,}{sp^3}
De los cuatro orbitales así formados, uno (25%) es proveniente del orbital s (el 2s) del carbono y tres (75%) provenientes de los orbitales p (2p). Sin embargo todos se sobreponen al aportar la hibridación producto del enlace. Tridimensionalmente, la distancia entre un hidrógeno y el otro en el metano son equivalentes e iguales a un ángulo de 109,5°.

Hibridación

En química, se conoce como hibridación a la combinación de orbitales atómicos dentro de unátomo para formar nuevos orbitales híbridos. Los orbitales atómicos híbridos son los que se superponen en la formación de los enlaces, dentro de la teoría del enlace de valencia, y justifican la geometría molecular.
El químico Linus Pauling desarrolló por primera vez la teoría de la hibridación con el fin de explicar la estructura de las moléculas como el metano (CH4) en 1931.1 Este concepto fue desarrollado para este tipo de sistemas químicos sencillos, pero el enfoque fue más tarde aplicado más ampliamente, y hoy se considera una heurística eficaz para la racionalización de las estructuras de compuestos orgánicos.

Compuestos Organicos El Carbono


Compuesto orgánico o molécula orgánica es una sustancia química que contienecarbono, formando enlaces carbono-carbono y carbono-hidrógeno. En muchos casos contienen oxígeno, nitrógeno, azufre, fósforo, boro, halógenos y otros elementosmenos frecuentes en su estado natural. Estos compuestos se denominan moléculas orgánicas. Algunos compuestos del carbono, carburos, los carbonatos y los óxidos de carbono, no son moléculas orgánicas. La principal característica de estas sustancias es que arden y pueden ser quemadas (son compuestos combustibles). La mayoría de los compuestos orgánicos se producen de forma artificial mediante síntesis químicaaunque algunos todavía se extraen de fuentes naturales.
Las moléculas orgánicas pueden ser de dos tipos:
  • Moléculas orgánicas naturales: son las sintetizadas por los seres vivos, y se llaman biomoléculas, las cuales son estudiadas por la bioquímica y las derivadas del petróleo como los hidrocarburos.
  • Moléculas orgánicas artificiales: son sustancias que no existen en la naturaleza y han sido fabricadas o sintetizadaspor el hombre, por ejemplo los plásticos.
La línea que divide las moléculas orgánicas de las inorgánicas ha originado polémicas e históricamente ha sido arbitraria, pero generalmente, los compuestos orgánicos tienen carbono con enlaces de hidrógeno, y los compuestos inorgánicos, no. Así el ácido carbónico es inorgánico, mientras que el ácido fórmico, el primer ácido carboxilico, es orgánico. Elanhídrido carbónico y el monóxido de carbono
, son compuestos inorgánicos. Por lo tanto, todas las moléculas orgánicas contienen carbono, pero no todas las moléculas que contienen carbono son moléculas orgánicas.

Propiedades de la química organica

- La Química Orgánica es la química de los compuestos del carbono tetravalente que forma largas cadenas estables mediante enlace covalente (por lo general,no polar) 

- La Química Orgánica comprende el estudio de millones de compuestos a diferencia de la Inorgánica que a lo sumo comprende unos miles 

- Muchos de los compuestos orgánicos se encuentran presente en la materia viva. 

- Por lo general, los compuestos orgánicos son insolubles en solventes polares (como el agua) salvo algunos que forman parte de la materia viva 

- Presentan puntos de fusión y ebullición relativamente bajos con respecto a los compuestos inorgánicos 



Vídeo sobre la química orgánica.


Importancia de la química orgánica

Los seres vivos estamos formados por moléculas orgánicas, proteínas, ácidos nucleicos, azúcares y grasas. Todos ellos son compuestos cuya base principal es el carbono. Los productos orgánicos están presentes en todos los aspectos de nuestra vida: la ropa que vestimos, los jabones, champús, desodorantes, medicinas, perfumes, utensilios de cocina, la comida, etc.

La Química Orgánica es importante porque gracias a la química orgánica existe todo lo que hoy podemos percibir y sentir, ya que todo los productos orgánicos están presentes en todos los aspectos de nuestra vida, como por ejemplo:

- La ropa que vestimos.

- Los jabones, shampoos, desodorantes.

- Medicinas, perfumes, utensilios de cocina.

- La comida, etc.

Es importante porque nos permite conocimiento de todo lo que funciona en nuestro organismo y el conocimiento de hasta todo nuestro propio cuerpo como por ejemplo:

- La progesterona.

- El colesterol, etc.

► Es importante porque sino hubiese existido la química orgánica no hubiéramos obtendrído medicamentos ni medicinas artificiales, es que gracias a la química orgánica es que va avanzando con el tiempo la tecnología, tanto en la medicina para crear y descubrir nuevos medicamentos que puedan combatir las enfermedades mortales de hoy en día.

► Importante porque todos los compuestos responsables de la vida, son sustancias orgánicas.

► Importante porque el progreso de la Química Orgánica permite profundizar en el esclarecimiento de los procesos vitales.

► La industria química (fármacos, polímeros, pesticidas, herbicidas) juega un papel muy importante en la economía mundial e incide en muchos aspectos de nuestra vida diaria con sus productos.

Historia de la Química orgánica

La química orgánica se constituyó como disciplina en los años treinta. El desarrollo de nuevos métodos de análisis de las sustancias de origen animal y vegetal, basados en el empleo de disolventes como el éter o el alcohol, permitió el aislamiento de un gran número de sustancias orgánicas que recibieron el nombre de "principios inmediatos". La aparición de la química orgánica se asocia a menudo al descubrimiento, en 1828, por el químico alemán Friedrich Wöhler, de que la sustancia inorgánica cianato de amonio podía convertirse en urea, una sustancia orgánica
 que se encuentra en la orina de muchos animales. Antes de este descubrimiento, los químicos creían que para sintetizar sustancias orgánicas, era necesaria la intervención de lo que llamaban ‘la fuerza vital’, es decir, los organismos vivos. El experimento de Wöhler rompió la barrera entre sustancias orgánicas e inorgánicas. Los químicos modernos consideran compuestos orgánicos a aquellos que contienen carbono e hidrógeno, y otros elementos (que pueden ser uno o más), siendo los más comunes: oxígeno, nitrógeno, azufre y los halógenos.
La diferencia entre la química orgánica y la química biológica es que en la química biológica las moléculas de ADN tienen una historia y, por ende, en su estructura nos hablan de su historia, del pasado en el que se han constituido, mientras que una molécula orgánica, creada hoy, es sólo testigo de su presente, sin pasado y sin evolución histórica.
La química orgánica o química del carbono es la rama de la química que estudia una clase numerosa de moléculas que contienen carbono formando enlaces covalentes carbono-carbono o carbono-hidrógeno y otros heteroátomos, también conocidos como compuestos orgánicosFriedrich Wöhler es conocido como el padre de la química orgánica.